If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2=14x
We move all terms to the left:
49x^2-(14x)=0
a = 49; b = -14; c = 0;
Δ = b2-4ac
Δ = -142-4·49·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14}{2*49}=\frac{0}{98} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14}{2*49}=\frac{28}{98} =2/7 $
| a+3+2a=(-1)3a+4 | | -4/3=4x | | 600+15x=4200 | | 93=3(6k+7) | | 6-2x+1=3x-x+7 | | 60=x+(-15) | | .55p+6.99=11.94 | | 10c+4=2c+28 | | 1/3(5x+6)1/2(x+5)=3 | | -13-11w=-13w+7w+12 | | 19.2b=19.5b+2.34 | | 1960+175.75x=4420.50 | | 5(5x-11)=120 | | 9(5x-7)=162 | | -3(3x+7)=-93 | | 5−23x=11−23x. | | 5−23x=11−23 | | -10=14v+-14v | | 7(8x-6)=462 | | 5x=9x-70 | | 6(9x+13)=510 | | 11c=5 | | 27=7+u/4 | | 10(6x-11)=490 | | 3x-7=x-23 | | 5x-5=120/12 | | 3r+10=15r−8 | | x/3+9=30 | | 46.188*x=35 | | 6(5x+13)=348 | | 6(5x+13=348 | | 5(6x-17)=125 |